标签
详细说明
- name:pennylane
- description:Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows.
PennyLane
Overview
PennyLane is a quantum computing library that enables training quantum computers like neural networks. It provides automatic differentiation of quantum circuits, device-independent programming, and seamless integration with classical machine learning frameworks.
Installation
Install using uv:
uv pip install pennylane
For quantum hardware access, install device plugins:
# IBM Quantum
uv pip install pennylane-qiskit
# Amazon Braket
uv pip install amazon-braket-pennylane-plugin
# Google Cirq
uv pip install pennylane-cirq
# Rigetti Forest
uv pip install pennylane-rigetti
# IonQ
uv pip install pennylane-ionq
Quick Start
Build a quantum circuit and optimize its parameters:
import pennylane as qml
from pennylane import numpy as np
# Create device
dev = qml.device('default.qubit', wires=2)
# Define quantum circuit
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=1)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
# Optimize parameters
opt = qml.GradientDescentOptimizer(stepsize=0.1)
params = np.array([0.1, 0.2], requires_grad=True)
for i in range(100):
params = opt.step(circuit, params)
Core Capabilities
1. Quantum Circuit Construction
Build circuits with gates, measurements, and state preparation. See references/quantum_circuits.md for:
- Single and multi-qubit gates
- Controlled operations and conditional logic
- Mid-circuit measurements and adaptive circuits
- Various measurement types (expectation, probability, samples)
- Circuit inspection and debugging
2. Quantum Machine Learning
Create hybrid quantum-classical models. See references/quantum_ml.md for:
- Integration with PyTorch, JAX, TensorFlow
- Quantum neural networks and variational classifiers
- Data encoding strategies (angle, amplitude, basis, IQP)
- Training hybrid models with backpropagation
- Transfer learning with quantum circuits
3. Quantum Chemistry
Simulate molecules and compute ground state energies. See references/quantum_chemistry.md for:
- Molecular Hamiltonian generation
- Variational Quantum Eigensolver (VQE)
- UCCSD ansatz for chemistry
- Geometry optimization and dissociation curves
- Molecular property calculations
4. Device Management
Execute on simulators or quantum hardware. See references/devices_backends.md for:
- Built-in simulators (default.qubit, lightning.qubit, default.mixed)
- Hardware plugins (IBM, Amazon Braket, Google, Rigetti, IonQ)
- Device selection and configuration
- Performance optimization and caching
- GPU acceleration and JIT compilation
5. Optimization
Train quantum circuits with various optimizers. See references/optimization.md for:
- Built-in optimizers (Adam, gradient descent, momentum, RMSProp)
- Gradient computation methods (backprop, parameter-shift, adjoint)
- Variational algorithms (VQE, QAOA)
- Training strategies (learning rate schedules, mini-batches)
- Handling barren plateaus and local minima
6. Advanced Features
Leverage templates, transforms, and compilation. See references/advanced_features.md for:
- Circuit templates and layers
- Transforms and circuit optimization
- Pulse-level programming
- Catalyst JIT compilation
- Noise models and error mitigation
- Resource estimation
Common Workflows
Train a Variational Classifier
# 1. Define ansatz
@qml.qnode(dev)
def classifier(x, weights):
# Encode data
qml.AngleEmbedding(x, wires=range(4))
# Variational layers
qml.StronglyEntanglingLayers(weights, wires=range(4))
return qml.expval(qml.PauliZ(0))
# 2. Train
opt = qml.AdamOptimizer(stepsize=0.01)
weights = np.random.random((3, 4, 3)) # 3 layers, 4 wires
for epoch in range(100):
for x, y in zip(X_train, y_train):
weights = opt.step(lambda w: (classifier(x, w) - y)**2, weights)
Run VQE for Molecular Ground State
from pennylane import qchem
# 1. Build Hamiltonian
symbols = ['H', 'H']
coords = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.74])
H, n_qubits = qchem.molecular_hamiltonian(symbols, coords)
# 2. Define ansatz
@qml.qnode(dev)
def vqe_circuit(params):
qml.BasisState(qchem.hf_state(2, n_qubits), wires=range(n_qubits))
qml.UCCSD(params, wires=range(n_qubits))
return qml.expval(H)
# 3. Optimize
opt = qml.AdamOptimizer(stepsize=0.1)
params = np.zeros(10, requires_grad=True)
for i in range(100):
params, energy = opt.step_and_cost(vqe_circuit, params)
print(f"Step {i}: Energy = {energy:.6f} Ha")
Switch Between Devices
# Same circuit, different backends
circuit_def = lambda dev: qml.qnode(dev)(circuit_function)
# Test on simulator
dev_sim = qml.device('default.qubit', wires=4)
result_sim = circuit_def(dev_sim)(params)
# Run on quantum hardware
dev_hw = qml.device('qiskit.ibmq', wires=4, backend='ibmq_manila')
result_hw = circuit_def(dev_hw)(params)
Detailed Documentation
For comprehensive coverage of specific topics, consult the reference files:
- Getting started:
references/getting_started.md- Installation, basic concepts, first steps - Quantum circuits:
references/quantum_circuits.md- Gates, measurements, circuit patterns - Quantum ML:
references/quantum_ml.md- Hybrid models, framework integration, QNNs - Quantum chemistry:
references/quantum_chemistry.md- VQE, molecular Hamiltonians, chemistry workflows - Devices:
references/devices_backends.md- Simulators, hardware plugins, device configuration - Optimization:
references/optimization.md- Optimizers, gradients, variational algorithms - Advanced:
references/advanced_features.md- Templates, transforms, JIT compilation, noise
Best Practices
- Start with simulators - Test on
default.qubitbefore deploying to hardware - Use parameter-shift for hardware - Backpropagation only works on simulators
- Choose appropriate encodings - Match data encoding to problem structure
- Initialize carefully - Use small random values to avoid barren plateaus
- Monitor gradients - Check for vanishing gradients in deep circuits
- Cache devices - Reuse device objects to reduce initialization overhead
- Profile circuits - Use
qml.specs()to analyze circuit complexity - Test locally - Validate on simulators before submitting to hardware
- Use templates - Leverage built-in templates for common circuit patterns
- Compile when possible - Use Catalyst JIT for performance-critical code
Resources
- Official documentation: https://docs.pennylane.ai
- Codebook (tutorials): https://pennylane.ai/codebook
- QML demonstrations: https://pennylane.ai/qml/demonstrations
- Community forum: https://discuss.pennylane.ai
- GitHub: https://github.com/PennyLaneAI/pennylane
相关 Skill
您可能也会对这些感兴趣
modal
Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.