Tags
Description
- name:sentence-transformers
- description:Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.
- version:1.0.0
- author:Orchestra Research
- license:MIT
- tags:Sentence Transformers,Embeddings,Semantic Similarity,RAG,Multilingual,Multimodal,Pre-Trained Models,Clustering,Semantic Search,Production
- dependencies:sentence-transformers,transformers,torch
Sentence Transformers - State-of-the-Art Embeddings
Python framework for sentence and text embeddings using transformers.
When to use Sentence Transformers
Use when:
- Need high-quality embeddings for RAG
- Semantic similarity and search
- Text clustering and classification
- Multilingual embeddings (100+ languages)
- Running embeddings locally (no API)
- Cost-effective alternative to OpenAI embeddings
Metrics:
- 15,700+ GitHub stars
- 5000+ pre-trained models
- 100+ languages supported
- Based on PyTorch/Transformers
Use alternatives instead:
- OpenAI Embeddings: Need API-based, highest quality
- Instructor: Task-specific instructions
- Cohere Embed: Managed service
Quick start
Installation
pip install sentence-transformers
Basic usage
from sentence_transformers import SentenceTransformer
# Load model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Generate embeddings
sentences = [
"This is an example sentence",
"Each sentence is converted to a vector"
]
embeddings = model.encode(sentences)
print(embeddings.shape) # (2, 384)
# Cosine similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
Popular models
General purpose
# Fast, good quality (384 dim)
model = SentenceTransformer('all-MiniLM-L6-v2')
# Better quality (768 dim)
model = SentenceTransformer('all-mpnet-base-v2')
# Best quality (1024 dim, slower)
model = SentenceTransformer('all-roberta-large-v1')
Multilingual
# 50+ languages
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
# 100+ languages
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
Domain-specific
# Legal domain
model = SentenceTransformer('nlpaueb/legal-bert-base-uncased')
# Scientific papers
model = SentenceTransformer('allenai/specter')
# Code
model = SentenceTransformer('microsoft/codebert-base')
Semantic search
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('all-MiniLM-L6-v2')
# Corpus
corpus = [
"Python is a programming language",
"Machine learning uses algorithms",
"Neural networks are powerful"
]
# Encode corpus
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)
# Query
query = "What is Python?"
query_embedding = model.encode(query, convert_to_tensor=True)
# Find most similar
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
print(hits)
Similarity computation
# Cosine similarity
similarity = util.cos_sim(embedding1, embedding2)
# Dot product
similarity = util.dot_score(embedding1, embedding2)
# Pairwise cosine similarity
similarities = util.cos_sim(embeddings, embeddings)
Batch encoding
# Efficient batch processing
sentences = ["sentence 1", "sentence 2", ...] * 1000
embeddings = model.encode(
sentences,
batch_size=32,
show_progress_bar=True,
convert_to_tensor=False # or True for PyTorch tensors
)
Fine-tuning
from sentence_transformers import InputExample, losses
from torch.utils.data import DataLoader
# Training data
train_examples = [
InputExample(texts=['sentence 1', 'sentence 2'], label=0.8),
InputExample(texts=['sentence 3', 'sentence 4'], label=0.3),
]
train_dataloader = DataLoader(train_examples, batch_size=16)
# Loss function
train_loss = losses.CosineSimilarityLoss(model)
# Train
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=10,
warmup_steps=100
)
# Save
model.save('my-finetuned-model')
LangChain integration
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
# Use with vector stores
from langchain_chroma import Chroma
vectorstore = Chroma.from_documents(
documents=docs,
embedding=embeddings
)
LlamaIndex integration
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2"
)
from llama_index.core import Settings
Settings.embed_model = embed_model
# Use in index
index = VectorStoreIndex.from_documents(documents)
Model selection guide
| Model | Dimensions | Speed | Quality | Use Case |
|---|---|---|---|---|
| all-MiniLM-L6-v2 | 384 | Fast | Good | General, prototyping |
| all-mpnet-base-v2 | 768 | Medium | Better | Production RAG |
| all-roberta-large-v1 | 1024 | Slow | Best | High accuracy needed |
| paraphrase-multilingual | 768 | Medium | Good | Multilingual |
Best practices
- Start with all-MiniLM-L6-v2 - Good baseline
- Normalize embeddings - Better for cosine similarity
- Use GPU if available - 10× faster encoding
- Batch encoding - More efficient
- Cache embeddings - Expensive to recompute
- Fine-tune for domain - Improves quality
- Test different models - Quality varies by task
- Monitor memory - Large models need more RAM
Performance
| Model | Speed (sentences/sec) | Memory | Dimension |
|---|---|---|---|
| MiniLM | ~2000 | 120MB | 384 |
| MPNet | ~600 | 420MB | 768 |
| RoBERTa | ~300 | 1.3GB | 1024 |
Resources
- GitHub: https://github.com/UKPLab/sentence-transformers ⭐ 15,700+
- Models: https://huggingface.co/sentence-transformers
- Docs: https://www.sbert.net
- License: Apache 2.0
Related Skills
You might also be interested in these
hybrid-search-implementation
Combine vector and keyword search for improved retrieval. Use when implementing RAG systems, building search engines, or when neither approach alone provides sufficient recall.
llamaindex
Data framework for building LLM applications with RAG. Specializes in document ingestion (300+ connectors), indexing, and querying. Features vector indices, query engines, agents, and multi-modal support. Use for document Q&A, chatbots, knowledge retrieval, or building RAG pipelines. Best for data-centric LLM applications.
huggingface-tokenizers
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.