Tags
Description
Metadata
- name:event-store-design
- description:Design and implement event stores for event-sourced systems. Use when building event sourcing infrastructure, choosing event store technologies, or implementing event persistence patterns.
Event Store Design
Comprehensive guide to designing event stores for event-sourced applications.
When to Use This Skill
- Designing event sourcing infrastructure
- Choosing between event store technologies
- Implementing custom event stores
- Optimizing event storage and retrieval
- Setting up event store schemas
- Planning for event store scaling
Core Concepts
1. Event Store Architecture
┌─────────────────────────────────────────────────────┐
│ Event Store │
├─────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Stream 1 │ │ Stream 2 │ │ Stream 3 │ │
│ │ (Aggregate) │ │ (Aggregate) │ │ (Aggregate) │ │
│ ├─────────────┤ ├─────────────┤ ├─────────────┤ │
│ │ Event 1 │ │ Event 1 │ │ Event 1 │ │
│ │ Event 2 │ │ Event 2 │ │ Event 2 │ │
│ │ Event 3 │ │ ... │ │ Event 3 │ │
│ │ ... │ │ │ │ Event 4 │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
├─────────────────────────────────────────────────────┤
│ Global Position: 1 → 2 → 3 → 4 → 5 → 6 → ... │
└─────────────────────────────────────────────────────┘
2. Event Store Requirements
| Requirement | Description |
|---|---|
| Append-only | Events are immutable, only appends |
| Ordered | Per-stream and global ordering |
| Versioned | Optimistic concurrency control |
| Subscriptions | Real-time event notifications |
| Idempotent | Handle duplicate writes safely |
Technology Comparison
| Technology | Best For | Limitations |
|---|---|---|
| EventStoreDB | Pure event sourcing | Single-purpose |
| PostgreSQL | Existing Postgres stack | Manual implementation |
| Kafka | High-throughput streaming | Not ideal for per-stream queries |
| DynamoDB | Serverless, AWS-native | Query limitations |
| Marten | .NET ecosystems | .NET specific |
Templates
Template 1: PostgreSQL Event Store Schema
-- Events table
CREATE TABLE events (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
stream_id VARCHAR(255) NOT NULL,
stream_type VARCHAR(255) NOT NULL,
event_type VARCHAR(255) NOT NULL,
event_data JSONB NOT NULL,
metadata JSONB DEFAULT '{}',
version BIGINT NOT NULL,
global_position BIGSERIAL,
created_at TIMESTAMPTZ DEFAULT NOW(),
CONSTRAINT unique_stream_version UNIQUE (stream_id, version)
);
-- Index for stream queries
CREATE INDEX idx_events_stream_id ON events(stream_id, version);
-- Index for global subscription
CREATE INDEX idx_events_global_position ON events(global_position);
-- Index for event type queries
CREATE INDEX idx_events_event_type ON events(event_type);
-- Index for time-based queries
CREATE INDEX idx_events_created_at ON events(created_at);
-- Snapshots table
CREATE TABLE snapshots (
stream_id VARCHAR(255) PRIMARY KEY,
stream_type VARCHAR(255) NOT NULL,
snapshot_data JSONB NOT NULL,
version BIGINT NOT NULL,
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- Subscriptions checkpoint table
CREATE TABLE subscription_checkpoints (
subscription_id VARCHAR(255) PRIMARY KEY,
last_position BIGINT NOT NULL DEFAULT 0,
updated_at TIMESTAMPTZ DEFAULT NOW()
);
Template 2: Python Event Store Implementation
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Optional, List
from uuid import UUID, uuid4
import json
import asyncpg
@dataclass
class Event:
stream_id: str
event_type: str
data: dict
metadata: dict = field(default_factory=dict)
event_id: UUID = field(default_factory=uuid4)
version: Optional[int] = None
global_position: Optional[int] = None
created_at: datetime = field(default_factory=datetime.utcnow)
class EventStore:
def __init__(self, pool: asyncpg.Pool):
self.pool = pool
async def append_events(
self,
stream_id: str,
stream_type: str,
events: List[Event],
expected_version: Optional[int] = None
) -> List[Event]:
"""Append events to a stream with optimistic concurrency."""
async with self.pool.acquire() as conn:
async with conn.transaction():
# Check expected version
if expected_version is not None:
current = await conn.fetchval(
"SELECT MAX(version) FROM events WHERE stream_id = $1",
stream_id
)
current = current or 0
if current != expected_version:
raise ConcurrencyError(
f"Expected version {expected_version}, got {current}"
)
# Get starting version
start_version = await conn.fetchval(
"SELECT COALESCE(MAX(version), 0) + 1 FROM events WHERE stream_id = $1",
stream_id
)
# Insert events
saved_events = []
for i, event in enumerate(events):
event.version = start_version + i
row = await conn.fetchrow(
"""
INSERT INTO events (id, stream_id, stream_type, event_type,
event_data, metadata, version, created_at)
VALUES ($1, $2, $3, $4, $5, $6, $7, $8)
RETURNING global_position
""",
event.event_id,
stream_id,
stream_type,
event.event_type,
json.dumps(event.data),
json.dumps(event.metadata),
event.version,
event.created_at
)
event.global_position = row['global_position']
saved_events.append(event)
return saved_events
async def read_stream(
self,
stream_id: str,
from_version: int = 0,
limit: int = 1000
) -> List[Event]:
"""Read events from a stream."""
async with self.pool.acquire() as conn:
rows = await conn.fetch(
"""
SELECT id, stream_id, event_type, event_data, metadata,
version, global_position, created_at
FROM events
WHERE stream_id = $1 AND version >= $2
ORDER BY version
LIMIT $3
""",
stream_id, from_version, limit
)
return [self._row_to_event(row) for row in rows]
async def read_all(
self,
from_position: int = 0,
limit: int = 1000
) -> List[Event]:
"""Read all events globally."""
async with self.pool.acquire() as conn:
rows = await conn.fetch(
"""
SELECT id, stream_id, event_type, event_data, metadata,
version, global_position, created_at
FROM events
WHERE global_position > $1
ORDER BY global_position
LIMIT $2
""",
from_position, limit
)
return [self._row_to_event(row) for row in rows]
async def subscribe(
self,
subscription_id: str,
handler,
from_position: int = 0,
batch_size: int = 100
):
"""Subscribe to all events from a position."""
# Get checkpoint
async with self.pool.acquire() as conn:
checkpoint = await conn.fetchval(
"""
SELECT last_position FROM subscription_checkpoints
WHERE subscription_id = $1
""",
subscription_id
)
position = checkpoint or from_position
while True:
events = await self.read_all(position, batch_size)
if not events:
await asyncio.sleep(1) # Poll interval
continue
for event in events:
await handler(event)
position = event.global_position
# Save checkpoint
async with self.pool.acquire() as conn:
await conn.execute(
"""
INSERT INTO subscription_checkpoints (subscription_id, last_position)
VALUES ($1, $2)
ON CONFLICT (subscription_id)
DO UPDATE SET last_position = $2, updated_at = NOW()
""",
subscription_id, position
)
def _row_to_event(self, row) -> Event:
return Event(
event_id=row['id'],
stream_id=row['stream_id'],
event_type=row['event_type'],
data=json.loads(row['event_data']),
metadata=json.loads(row['metadata']),
version=row['version'],
global_position=row['global_position'],
created_at=row['created_at']
)
class ConcurrencyError(Exception):
"""Raised when optimistic concurrency check fails."""
pass
Template 3: EventStoreDB Usage
from esdbclient import EventStoreDBClient, NewEvent, StreamState
import json
# Connect
client = EventStoreDBClient(uri="esdb://localhost:2113?tls=false")
# Append events
def append_events(stream_name: str, events: list, expected_revision=None):
new_events = [
NewEvent(
type=event['type'],
data=json.dumps(event['data']).encode(),
metadata=json.dumps(event.get('metadata', {})).encode()
)
for event in events
]
if expected_revision is None:
state = StreamState.ANY
elif expected_revision == -1:
state = StreamState.NO_STREAM
else:
state = expected_revision
return client.append_to_stream(
stream_name=stream_name,
events=new_events,
current_version=state
)
# Read stream
def read_stream(stream_name: str, from_revision: int = 0):
events = client.get_stream(
stream_name=stream_name,
stream_position=from_revision
)
return [
{
'type': event.type,
'data': json.loads(event.data),
'metadata': json.loads(event.metadata) if event.metadata else {},
'stream_position': event.stream_position,
'commit_position': event.commit_position
}
for event in events
]
# Subscribe to all
async def subscribe_to_all(handler, from_position: int = 0):
subscription = client.subscribe_to_all(commit_position=from_position)
async for event in subscription:
await handler({
'type': event.type,
'data': json.loads(event.data),
'stream_id': event.stream_name,
'position': event.commit_position
})
# Category projection ($ce-Category)
def read_category(category: str):
"""Read all events for a category using system projection."""
return read_stream(f"$ce-{category}")
Template 4: DynamoDB Event Store
import boto3
from boto3.dynamodb.conditions import Key
from datetime import datetime
import json
import uuid
class DynamoEventStore:
def __init__(self, table_name: str):
self.dynamodb = boto3.resource('dynamodb')
self.table = self.dynamodb.Table(table_name)
def append_events(self, stream_id: str, events: list, expected_version: int = None):
"""Append events with conditional write for concurrency."""
with self.table.batch_writer() as batch:
for i, event in enumerate(events):
version = (expected_version or 0) + i + 1
item = {
'PK': f"STREAM#{stream_id}",
'SK': f"VERSION#{version:020d}",
'GSI1PK': 'EVENTS',
'GSI1SK': datetime.utcnow().isoformat(),
'event_id': str(uuid.uuid4()),
'stream_id': stream_id,
'event_type': event['type'],
'event_data': json.dumps(event['data']),
'version': version,
'created_at': datetime.utcnow().isoformat()
}
batch.put_item(Item=item)
return events
def read_stream(self, stream_id: str, from_version: int = 0):
"""Read events from a stream."""
response = self.table.query(
KeyConditionExpression=Key('PK').eq(f"STREAM#{stream_id}") &
Key('SK').gte(f"VERSION#{from_version:020d}")
)
return [
{
'event_type': item['event_type'],
'data': json.loads(item['event_data']),
'version': item['version']
}
for item in response['Items']
]
# Table definition (CloudFormation/Terraform)
"""
DynamoDB Table:
- PK (Partition Key): String
- SK (Sort Key): String
- GSI1PK, GSI1SK for global ordering
Capacity: On-demand or provisioned based on throughput needs
"""
Best Practices
Do's
- Use stream IDs that include aggregate type -
Order-{uuid} - Include correlation/causation IDs - For tracing
- Version events from day one - Plan for schema evolution
- Implement idempotency - Use event IDs for deduplication
- Index appropriately - For your query patterns
Don'ts
- Don't update or delete events - They're immutable facts
- Don't store large payloads - Keep events small
- Don't skip optimistic concurrency - Prevents data corruption
- Don't ignore backpressure - Handle slow consumers
Resources
Related Skills
You might also be interested in these
microservices-patterns
Design microservices architectures with service boundaries, event-driven communication, and resilience patterns. Use when building distributed systems, decomposing monoliths, or implementing microservices.
react-native-architecture
Build production React Native apps with Expo, navigation, native modules, offline sync, and cross-platform patterns. Use when developing mobile apps, implementing native integrations, or architecting React Native projects.
API Integration Specialist
Expert in integrating third-party APIs with proper authentication, error handling, rate limiting, and retry logic. Use when integrating REST APIs, GraphQL endpoints, webhooks, or external services. Specializes in OAuth flows, API key management, request/response transformation, and building robust API clients.