タグ
説明
- name:pyopenms
- description:Python interface to OpenMS for mass spectrometry data analysis. Use for LC-MS/MS proteomics and metabolomics workflows including file handling (mzML, mzXML, mzTab, FASTA, pepXML, protXML, mzIdentML), signal processing, feature detection, peptide identification, and quantitative analysis. Apply when working with mass spectrometry data, analyzing proteomics experiments, or processing metabolomics datasets.
PyOpenMS
Overview
PyOpenMS provides Python bindings to the OpenMS library for computational mass spectrometry, enabling analysis of proteomics and metabolomics data. Use for handling mass spectrometry file formats, processing spectral data, detecting features, identifying peptides/proteins, and performing quantitative analysis.
Installation
Install using uv:
uv uv pip install pyopenms
Verify installation:
import pyopenms
print(pyopenms.__version__)
Core Capabilities
PyOpenMS organizes functionality into these domains:
1. File I/O and Data Formats
Handle mass spectrometry file formats and convert between representations.
Supported formats: mzML, mzXML, TraML, mzTab, FASTA, pepXML, protXML, mzIdentML, featureXML, consensusXML, idXML
Basic file reading:
import pyopenms as ms
# Read mzML file
exp = ms.MSExperiment()
ms.MzMLFile().load("data.mzML", exp)
# Access spectra
for spectrum in exp:
mz, intensity = spectrum.get_peaks()
print(f"Spectrum: {len(mz)} peaks")
For detailed file handling: See references/file_io.md
2. Signal Processing
Process raw spectral data with smoothing, filtering, centroiding, and normalization.
Basic spectrum processing:
# Smooth spectrum with Gaussian filter
gaussian = ms.GaussFilter()
params = gaussian.getParameters()
params.setValue("gaussian_width", 0.1)
gaussian.setParameters(params)
gaussian.filterExperiment(exp)
For algorithm details: See references/signal_processing.md
3. Feature Detection
Detect and link features across spectra and samples for quantitative analysis.
# Detect features
ff = ms.FeatureFinder()
ff.run("centroided", exp, features, params, ms.FeatureMap())
For complete workflows: See references/feature_detection.md
4. Peptide and Protein Identification
Integrate with search engines and process identification results.
Supported engines: Comet, Mascot, MSGFPlus, XTandem, OMSSA, Myrimatch
Basic identification workflow:
# Load identification data
protein_ids = []
peptide_ids = []
ms.IdXMLFile().load("identifications.idXML", protein_ids, peptide_ids)
# Apply FDR filtering
fdr = ms.FalseDiscoveryRate()
fdr.apply(peptide_ids)
For detailed workflows: See references/identification.md
5. Metabolomics Analysis
Perform untargeted metabolomics preprocessing and analysis.
Typical workflow:
- Load and process raw data
- Detect features
- Align retention times across samples
- Link features to consensus map
- Annotate with compound databases
For complete metabolomics workflows: See references/metabolomics.md
Data Structures
PyOpenMS uses these primary objects:
- MSExperiment: Collection of spectra and chromatograms
- MSSpectrum: Single mass spectrum with m/z and intensity pairs
- MSChromatogram: Chromatographic trace
- Feature: Detected chromatographic peak with quality metrics
- FeatureMap: Collection of features
- PeptideIdentification: Search results for peptides
- ProteinIdentification: Search results for proteins
For detailed documentation: See references/data_structures.md
Common Workflows
Quick Start: Load and Explore Data
import pyopenms as ms
# Load mzML file
exp = ms.MSExperiment()
ms.MzMLFile().load("sample.mzML", exp)
# Get basic statistics
print(f"Number of spectra: {exp.getNrSpectra()}")
print(f"Number of chromatograms: {exp.getNrChromatograms()}")
# Examine first spectrum
spec = exp.getSpectrum(0)
print(f"MS level: {spec.getMSLevel()}")
print(f"Retention time: {spec.getRT()}")
mz, intensity = spec.get_peaks()
print(f"Peaks: {len(mz)}")
Parameter Management
Most algorithms use a parameter system:
# Get algorithm parameters
algo = ms.GaussFilter()
params = algo.getParameters()
# View available parameters
for param in params.keys():
print(f"{param}: {params.getValue(param)}")
# Modify parameters
params.setValue("gaussian_width", 0.2)
algo.setParameters(params)
Export to Pandas
Convert data to pandas DataFrames for analysis:
import pyopenms as ms
import pandas as pd
# Load feature map
fm = ms.FeatureMap()
ms.FeatureXMLFile().load("features.featureXML", fm)
# Convert to DataFrame
df = fm.get_df()
print(df.head())
Integration with Other Tools
PyOpenMS integrates with:
- Pandas: Export data to DataFrames
- NumPy: Work with peak arrays
- Scikit-learn: Machine learning on MS data
- Matplotlib/Seaborn: Visualization
- R: Via rpy2 bridge
Resources
- Official documentation: https://pyopenms.readthedocs.io
- OpenMS documentation: https://www.openms.org
- GitHub: https://github.com/OpenMS/OpenMS
References
references/file_io.md- Comprehensive file format handlingreferences/signal_processing.md- Signal processing algorithmsreferences/feature_detection.md- Feature detection and linkingreferences/identification.md- Peptide and protein identificationreferences/metabolomics.md- Metabolomics-specific workflowsreferences/data_structures.md- Core objects and data structures
関連スキル
これらにも興味があるかもしれません
biomni
Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
flowio
Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).